sdMay23-24 Quantum Computing Aug 2022 - May 2023 Mid / Late March Report

Team: Quantum Computing

Goal: Create a kilo-qubit scale (KQB) **design** for a quantum computer Team Members:

- Nicholas Greenwood
- Jacob Frieden
- Emile Albert Kum Chi
- Colin Gorgen (not present, no listed reason)
- Arvid Gusatfson
- Sam Degnan (late due to unknown reasons)

Advisors:

- Gavin Nop (PhD student) (Late)
- Dr. Jonathan Smith
- Dr. Durga Paudyal

Agenda: Virtual Meeting

- Software Side Updates (took up whole meeting)
 - Jacob
 - Arvid
 - Sam
- Hardware Side Updates (never reached)
 - Nick
 - Emilie
 - Colin
- Discuss mid-semester Presentation if time allows and interest is there

Summary

- Weekly meeting summary, including accomplishments, pending issues, and individual contributions
 - Software team has done little in past 3 weeks due to wanting clarification on the following issues:
 - How are we pushing the needle here? How do we utilize the extra qubits to do so?
 - Johnathan's comment: We are thinking in node level, Qiskit (backbone) thinks at trap level
 - Having a dedicated memory trap
 - Parallel computing instances (3-4 traps doing the same thing)
 - Can qubits move physically between traps?
 - Yes, but we don't necessarily have to do that

- Memory traps would probably need physical transfer in
- Durga proposed not having the ions move and using different types of ions. Our project is hinged on the Honeywell design which uses YB though.
- Would we need to produce a quantum circuit for each trap or each node? Do we have the ability to work with the Wiskit API in a multiple-trap sense or do we pretend 1 node = 1 Qiskit trap?
 - Arvid thinks we would need one per node, not one per trap
 - Overall the team is struggling to see how Qiskit maps onto our proposed design, as Qiskit proxies for what we are trying to do aren't well understood
 - 1 Trap = 1 Qiskit circuit
- How do you propose traps and nodes will communicate with each other?
 - Traps: Physical transfer of ion from one trap to another with some noise added to imply accuracy
 - This could be done using "gates" to simulate the setting of ion values aka transferring
 - Node: transmit information in a physical sense
- Arvid has made a readme file that lays out what some of the functions and variables of various classes would be
- Arvid also worked on "NodeLiteral" and "Cycle" Class. A NodeLiteral is the manual version of a node where you describe all operations of the Node over time. Cycles allows you to adjust the time of the simulation
- Arvid used his software to demonstrate the issue of transferring info (qubits) from trap to trap
 - Qubit can only be represented via tensor products
 - Arvid recommends having a combined tensor vector and treating the 1 Trap = 1 Qiskit circuit
 - Gavin is in favor of not modeling the internal circuit at all, just the ion transfer from circuit to circuit (which can be done classically)
 - Gavin thinks being able to observe the degradation of qubits through X number of gates is important
 - Gavin says Qiskit is not great for the physical transport problem because it deals more in abstract terms and not with physical computer architecture
- Jacob showed his drawing that he made for the mid-semester presentation

User Interface: (Likely CLI - Simple and Fast) Classical Controls: Splits QC Job to 2+ traps Determines lifthow to utilize "memory" for the Job Any non-Oiskit optimizations that can be performed to pay respect to our hardware paradigm Quantum Computation Memory "Trap" (Single Qubit, quasi-periodic high Indelly. Likely non- Qiskit Quantum Computation Instance1 (communication mimics	Digital Twin						
Splits QC Job to 2+ traps Determines if/how to utilize "memory" for the Job Any non-Qiskit optimizations that can be performed to pay respect to our hardware paradigm Quantum Computation Memory "Trap" (Single Qubit, idelity. Likely non- Qiskit Quantum Computation Instance1 groperties of physical in trap connections (e, onsice, timing, (instance2)		Classical Controls: Splits QC Job to 2+ traps Determines if/how to utilize "memory" for the Job Any non-Qiskit optimizations that can be performed to pay					
Olskit Quantum Computation Instance1 Memory "Trap" (Single Qubit, Giskit Quantum Computation Instance1 Qiskit Quantum Communication mimics (e.g. noise, timing, (e.g. noise, timi	CI						
Giskit Quantum Computation Instance 1 Qiskit Quantum Computation Instance 2 Qiskit Quantum Communication mimics properties of physical ion trap connections (e.g. noise, timing,	(
		(Single Qubit, quasi-periodic high fidelity. Likely non- Qiskit Quantum Computation Instance1 Orporties of physical ion trap connections (e.g. noise, timing,					

0

Johnathan said the memory should be

simulated in Qiskit to, which was highlighted in a paper

- Emile asked about swapping the states of two atoms, if we could do that that would seemingly solve most of our issues
 - Gavin said you could transmit states between any qubit and a qubit arbitrarily far away
 - A swap gate could be implemented to do exactly that, but the ions have to be adjacent to each other. At that point, you may as well physically swap the ions
 - After running the computer for some time and getting ions entangled, the physically swapping is the only way to transmit states

Name	Contributions	Weekly Hours	Total Hours
Nick	Recorded and edited Mid-Semester slideshow, started looking into paper for relevant ancillary hardware info	5	70
Emile	Finished slides and presented Mid-Semester slideshow, worked on RF circuitry	7	72
Colin	Presented Mid-Semester slideshow, attempted Solidworks update	3	68
Sam	Presented Mid-Semester slideshow, developed question list	5	70
Jacob	Presented Mid-Semester slideshow and supporting materials	6	71

Arvid	Presented Mid-Semester slideshow, worked on Readme	8	73
	and instance files		

- Please note: We have not been keeping track of weekly or cumulative hours beforeEarly/Mid March. It seems very micro-manag-y and is not how we like to work. The only reason we have this table in here is to appease course requirements. All numbers are estimates.
- List of any decisions made
 - Look at work from the node level because there's not a good way to have traps communicate with each other via Qiskit
 - Pursue the ion-transfer angle at Gavin's behest
 - Noise + Physical movement
 - Can use linear trap tech to do this, vs having to use segmented rails (which are hard in real life)
 - This is more or less a scheduling problem
- Next steps for the project / Plans for the coming week(s)
 - Software side will flesh out node literal class
 - Look at work from the node level because there's not a good way to have traps communicate with each other via Qiskit
 - Hardware side will continue looking into ancillary hardware components and placement based on paper and Google